
Working Paper No. E2023/15

Indirect Inference and Small Sample Bias - Some
Recent Results

David Meenagh, Patrick Minford and Yongdeng Xu

May 2023
ISSN 1749-6010

Cardiff Economics Working Papers

This working paper is produced for discussion purpose only. These working papers are expected to be published in
due course, in revised form, and should not be quoted or cited without the author’s written permission.
Cardiff Economics Working Papers are available online from:
http://econpapers.repec.org/paper/cdfwpaper/ and
business.cardiff.ac.uk/research/academic-sections/economics/working-papers
Enquiries: EconWP@cardiff.ac.uk

Cardiff Business School
Cardiff University
Colum Drive

Cardiff CF10 3EU
United Kingdom

t: +44 (0)29 2087 4000
f: +44 (0)29 2087 4419
business.cardiff.ac.uk

http://econpapers.repec.org/paper/cdfwpaper/


Indirect Inference and Small Sample Bias � Some Recent Results

David Meenagh
(Cardi¤ Business School, Cardi¤ University)

Patrick Minford
(Cardi¤ Business School, Cardi¤ University, and CEPR)

Yongdeng Xu �

(Cardi¤ Business School, Cardi¤ University)

March 2023

Abstract

Macroeconomic researchers use a variety of estimators to parameterise their models empirically. One
such is FIML; another is a form of indirect inference we term �informal�under which data features are
�targeted�by the model -i.e. parameters are chosen so that model-simulated features replicate the data
features closely. In this paper we show, based on Monte Carlo experiments, that in the small samples
prevalent in macro data, both these methods produce high bias, while formal indirect inference, in which
the joint probability of the data- generated auxiliary model is maximised under the model simulated
distribution, produces low bias. We also show that FII gets this low bias from its high power in rejecting
misspeci�ed models, which comes in turn from the fact that this distribution is restricted by the model-
speci�ed parameters, so sharply distinguishing it from rival misspeci�ed models.
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1 Introduction

In this paper we contrast the low bias of the Indirect Inference estimator of dynamic stochastic general equi-
librium (DSGE) models in small samples with two alternative estimators: a) a widely used informal indirect
inference estimator (III) in which model parameters are chosen to �target�(i.e. replicate in simulation) a set
of data features, usually moments, b) the FIML estimator. Under a) we show by Monte Carlo experiment
that the III targeting procedure produces high bias. Under b). we build on earlier work that has shown by
Monte Carlo experiment the high bias coming from the FIML estimator; we ask what it is about the two
procedures that produces this relative bias outcome. The overall conclusion of this paper is that researchers
should estimate their DSGE models by formal Indirect Inference (FII), eschewing both targeting methods
and FIML, and that the low bias so obtained is derived from FII�s high power in rejecting misspeci�ed
models.

2 Should we target data features in estimating DSGE models?

A popular way to calibrate dynamic stochastic general equilibrium (DSGE) models is to calibrate them with
parameter values chosen to �target�(i.e. exactly replicate) a set of moments. The model is then asked how
well it can match some other moments when simulated; this match is informally carried out, in the hope
that the simulated and data moments are �similar�. An early example of this method is Chari et al. (2002);
two recent examples are Baslandze (2022), and Khan and Thomas (2013)1 . This methodology � which we
call �informal indirect inference�, III � is presented as a way of �nding a model version su¢ ciently �close
to�the data that it can be treated as the true model. We evaluate this methodology via Monte Carlo (MC)
experiments. What we �nd is that it leads to highly biased �estimates�of the model parameters in small
samples. By contrast we know from previous MC experiments that formal indirect inference (FII) using
moments as the auxiliary model produce estimates with very low bias.
Under FII a set of around 9 moments are chosen from among those available, this number being su¢ cient

to generate high, but not excessively high, power against parameter inaccuracy. The joint distribution of the
model-simulated moments is then calculated. Which particular moments are chosen makes little di¤erence;
the key to �goldilocks�power lies in the number used. This is because all the moments are nonlinear functions
of the structural parameters; hence any set of the data-based moments as a group will in all cases only have
a high probability of occurring in the model-simulated joint distribution if the model is the true one. The
estimated parameters are those that maximise this probability.
By contrast under III, the joint distribution of the model-simulated moments is not calculated, and so

neither is the joint probability of the data-based moments. Hence in general the parameter set chosen does
not maximise this probability. It might be thought that in practice it would come close; asymptotically, i.e.
in large samples, it would be the same. However, in small samples there is no reason to believe that the set
of parameters which generates mean simulated behaviour closest to the mean of the data moments will also
have the highest joint probability of generating these data moments. The two matching criteria are entirely
di¤erent. Nor does using the same number of moments make them the same. Only one of them, FII, chooses
the most likely set of parameters, conditional on the data moments. We con�rm this in our Monte Carlo
experiments below.

1Chari et al. (2002) choose a set of parameters for a sticky-price benchmark model that approximately �ts about a dozen
moments; they then test the model against a real exchange rate-cross-country-consumption correlation, showing that it badly
fails to replicate the absence of this correlation in the data.
Baslandze (2022) sets out a model of innovation by �rms, both regular and spinouts. She derives the steady state growth

equilibrium for the model outcomes. The moments of these when simulated with heterogeneous �rm shocks are compared with
the data moments; a subset of the model parameters is chosen to minimise the distance between a weighted average of several
moments, mostly with unit weights but one with a double weight. Various relationships in the data are then compared with
those implied by the model and found to be similar � e.g. the share of spinouts in states with di¤erent non-compete laws.
Khan and Thomas (2013) set out a DSGE model of an economy with credit constraints. They calibrate the parameters to

match a series of individual data. Later they compare its behaviour in various aspects with the data behaviour, suggesting it
is broadly similar.
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2.1 Indirect Inference on a DSGE model

DSGE models (possibly after linearization) have the general form:

A0Etyt+1 = A1yt +Bzt (1)

zt = Rzt�1 + "t

where yt contains the endogenous variables and zt the exogenous variables. The exogenous variables may
be observable or unobservable. For example, they may be structural disturbances. We assume that zt may
be represented by an autoregressive process with disturbances "t that are NID(0;�). Assuming that the
conditions of Fernandez-Villaverde et al. (2007) are satis�ed, the solution to this model can be represented
by a VAR of form �

yt
zt

�
= F

�
yt�1
zt�1

�
+G

�
�t
"t

�
: (2)

where �t are innovations.
A special case of the DSGE model is where all of the exogenous variables are unobservable and may

be regarded as structural shocks. An example is the Smets and Wouters (2007) US model to be examined
below. This case, and its solution, can be represented as above for the complete DSGE model.

2.1.1 FII Estimation

The FII criterion is based on the di¤erence between features of the auxiliary model (such as coe¢ cients
estimates, impulse response functions, moments or scores) obtained using data simulated from an estimated
(or calibrated) DSGE model and those obtained using actual data; these di¤erences are then represented
by a Wald statistic; we call it the IIW (Indirect Inference Wald) statistic. The speci�cation of the auxiliary
model re�ects the choice of descriptor variables.
If the DSGE model is correct (the null hypothesis) then, whatever the descriptors chosen, the features of

the auxiliary model on which the test is based will not be signi�cantly di¤erent whether based on simulated
or actual data. The simulated data from the DSGE model are obtained by bootstrapping the model using
the structural shocks implied by the given (or previously estimated) model and computed from the historical
data. We estimate the auxiliary model, using both the actual data and the N samples of bootstrapped data
to obtain estimates aT and aS(�0) of the vector �. We then use a Wald statistic (WS) based on the di¤erence
between aT , the estimates of the data descriptors derived from actual data, and aS(�0), the mean of their
distribution based on the simulated data, which is given by:

WS = (aT � aS(�0))0W�1(�0)(aT � aS(�0))

where �0 is the vector of parameters of the DSGE model on the null hypothesis that it is true and W (�0) is
the weighting matrix. Following Guerron-Quintana et al. (2017) and Le et al. (2011, 2016), W (�0) can be
obtained from the variance-covariance matrix of the distribution of simulated estimates aS

W (�0) =
1

N
�Ns=1(as � as)0(as � as) (3)

where as = 1
N�

N
s=1as. WS is asymptotically a �2(r) distribution, with the number of restrictions, r, equal

to the number of elements in aT : An account of the detailed steps of involved in �nding the Wald statistic
can be found in Le et al. (2016) and Minford et al. (2016).
Estimation based on indirect inference focuses on extracting estimates of the structural parameters from

estimates of the coe¢ cients of the auxiliary model by choosing parameter values that minimise the distance
between estimates of the auxiliary model based on simulated and actual data. A scalar measure of the
distance may be obtained using a Wald statistic. This can be minimised using any suitable algorithm.
The FII estimation may be expressed as

�̂ = argmin WS(�) (4)
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Under the null hypothesis of full encompassing and some regularity conditions, Dridi et al. (2007) show the
asymptotic normality of II estimator b�,

p
T (b� � �0) v N(0;�(N;W ) (5)

with

�(N;W ) =

�
@0(a)

@(�0)
W (�0)

�1 @
0(a)

@(�0)

��1
: (6)

W (�0) is the weighting matrix, which can obtained from bootstrap samples as in (3).

2.1.2 The Auxiliary Models

Le et al. (2017) show that the particular DSGE models we are examining are over-identi�ed, so that the
addition of more VAR coe¢ cients (e.g. by raising the order of the VAR) increases the power of the test,
because more nonlinear combinations of the DSGE structural coe¢ cients need to be matched. Le et al.
(2016) note that increasing the power in this way also reduces the chances of �nding a tractable model that
would pass the test, so that there is a trade-o¤ for users between power and tractability. Le et al. (2016)
and others (for example Minford et al, 2018; Meenagh et al, 2019; Meenagh et al, 2022) suggest the use of a
three variable VAR (1) as auxiliary model. In this case, there are 9 VAR coe¢ cients to match in the Wald
statistics. Minford et al. (2016) also consider the Impulse Response Functions and simulated moments,
which all have 9 elements to match in the Wald statistics, as the auxiliary model, and show that the power
of the II tests when using the di¤erent auxiliary models are similar. Considering the covariance matrix and
using its lower triangular elements, there are 3(3+1)/2=6 elements to compare in a three variable case.
In the Monte Carlo experiments below, we consider estimation with three di¤erent auxiliary models: 1)

II using 9 VAR coe¢ cients from a VAR(1); 2) II using 9 moments, consisting of 6 covariance elements and 3
�rst order autocorrelation; 3) II using the average of 6 moments, only including 6 covariance elements as a
single auxiliary model of �targeted moments�� where the remaining moments are left for informal checking.
4) II using the average of 9 moments as a single auxiliary model of targeted moments, where all moments
are thus used for estimation. The �rst two of these carry out formal II estimation, while the last two are
considered as informal II estimation.

2.1.3 Monte Carlo Experiments

We now perform some experiments comparing the formal and informal II estimation in small samples. The
sample size is chosen as 200, which is typical for macro data. We take the Smets-Wouters (2007) model,
with their estimated parameters to be the true model and generate 1000 samples of data from it. These are
treated as the observed data in the II estimation. We design Monte Carlo simulation following the same
approach as Le et al. (2016), Meenagh et al. (2019) and Meenagh et al. (2022).
The true parameter values are from Smets and Wouters (2007), Table 4. In estimation, we start the initial

parameter values by falsifying them by 10% in both directions (+=� alternately). We then estimate each
sample and report the absolute bias and standard deviation of the II estimators. The results are reported
in the Table 1, where y: real GDP, pi : in�ation rate, r : real interest rate.
We �nd that the FII estimator has a very small bias. The average absolute biases of the FII estimator

based on using VAR coe¢ cients and the 9 moments as auxiliary models are 2:26% and 3:02% respectively.
Le et al. (2016) and Meenagh et al (2022) �nd that the comparable FIML estimates are heavily biased in
small samples. FII estimation is, by contrast, found to be almost unbiased, which is clearly a very useful
property for those using DSGE models in practice.
In carrying out the III estimator, we �rst target only 6 moments, leaving 3 to be checked informally

after estimation. We then extend the number of targeted moments to the full 9. The average bias of the
III estimator, based on 6 moments as the auxiliary model, is twice to three times as large at 6:75%; nor is
it much reduced if more moments are used, as illustrated here with 9 moments, where the bias is 6:08%.
The informal II estimator thus has a much higher bias than the two formal II estimators. The standard
deviations of the four estimators are roughly the same.
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Table 1: Bias of II estimates by using di¤erent data descriptors
Formal II estimation Informal II estimation

9 VAR coe¢ cients jointly 9 Moments jointly Average of 6 Moments Average of 9 Moments
as auxiliary model as auxiliary model as single auxiliary model as single auxiliary model

Parameter True Values Bias% Std dev Bias% Std dev Bias% Std dev Bias% Std dev
� 0.19 0.64 0.020 0.74 0.021 6.53 0.018 3.05 0.017
h 0.71 5.02 0.065 7.22 0.069 9.09 0.049 5.54 0.055
�p 0.22 0.90 0.023 2.64 0.026 6.17 0.021 8.16 0.021
�w 0.59 1.38 0.060 1.92 0.068 10.17 0.058 6.8 0.054
�p 0.65 4.16 0.068 2.70 0.074 8.78 0.063 7.42 0.059
�w 0.73 1.42 0.075 0.34 0.083 4.50 0.073 7.64 0.066
' 5.48 1.86 0.557 2.72 0.608 7.20 0.524 8.48 0.486
� 1.61 0.32 0.166 3.06 0.182 3.92 0.140 4.28 0.146
 0.54 0.00 0.057 1.14 0.062 6.80 0.051 7.76 0.050
r�y 0.22 2.10 0.023 2.18 0.024 5.63 0.020 2.76 0.019
� 0.81 5.60 0.047 9.90 0.060 3.60 0.058 7.82 0.048
r� 2.03 2.24 0.188 3.72 0.204 5.76 0.188 6.40 0.163
ry 0.08 2.50 0.009 2.76 0.009 6.08 0.008 5.92 0.007
�c 1.39 4.58 0.137 1.90 0.155 10.58 0.132 4.90 0.124
�l 1.92 1.08 0.208 2.48 0.211 6.53 0.191 2.36 0.169
Average 2.26 0.113 3.02 0.124 6.75 0.106 6.08 0.099
Notes: The true parameter values are from Smets and Wouters (2007) table 4. Three variables used in VAR are (y; pi; r),
as in Le et al. (2016). Bias denotes the bias of II estimates. Std dev denotes the standard deviation.

The three variables we choose follow Le et al. (2016). To check if our results are stable across di¤erent
variables, we redo the Monte Carlo experiment by using three principal components of the 7 endogenous
variables in Smets and Wouters (2007)�s model. The results, available on request, are similar.

2.2 Summary of �nding

A common practice in estimating parameters in DSGE models is to �nd a set that, when simulated, gets
close to an average of certain data moments; the model�s simulated performance for other moments is then
compared to the data for these as an informal test of the model. We call this procedure informal Indirect
Inference, III. By contrast what we call Formal Indirect Inference, FII, chooses a set of moments as the
auxiliary model and computes the Wald statistic for the joint distribution of these moments according to
the structural DSGE model; it tests the model according to the probability of obtaining the data moments.
The FII estimator then chooses structural parameters that maximise this probability, hence are the most
likely conditional on the data moments. We show via Monte Carlo experiments that the FII estimator has
low bias in small samples, whereas the III estimator has much higher bias. It follows that models estimated
by III will frequently be substantially di¤erent from the true model and hence rejected by formal indirect
inference tests.

3 How should we account for the low bias of the Formal Indirect
Inference Estimator

In two recent surveys of indirect inference estimation Le et al. (2016) and Meenagh et al. (2019) have found
by Monte Carlo experiment that in small samples the formal indirect inference (FII) test has much greater
power than direct inference in its most widely used form of maximum likelihood (ML). So much so that in
practice the power of the FII procedure needs to be limited by reducing the size of the auxiliary model in
order to ensure �nding a tractable model that can pass the test threshold. These surveys also found that
in small sample estimation FII produced much lower bias than ML. Meenagh et al. (2019) noted (p.606):
�This property (of low small sample bias) comes from the high power of the test in rejecting false parameter
values.� In this section we attempt to quantify this small sample relationship between power and bias under
ML and FII .
Let us �rst recap each procedure. In ML the structural model is taken to the data and the estimation

searches over its parameters, including those of the ARMA error processes, to minimise the sum of squared
reduced form residuals.The joint likelihood of the data, conditional on the model, is maximised when this
sum is minimised.
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The FII method is set out in the previous section. Suppose we examine the VAR parameters, we can
think of the structural model we are estimating as implying a joint normal distribution of these reduced form
parameters, which we illustrate for two parameters as follows:

Figure 1: Bivariate normal distribution with correlation of 0 and 0.9. Two possible data points shown:
x=0.1, 0.9 and y=0.0

We can generate this Likelihood distribution of the two parameters, �1.�2, by bootstrapping the structural
model with its shocks and estimating a VAR on each bootstrap. The cumulative probability of these two
parameters� squared deviation from the model�s mean prediction (the peak likelihood point) weighted by
the inverse of their variance-covariance matrix, V , is represented by a chi-squared distribution where k,
the degrees of freedom, is given by the number of VAR parameters. If the two parameters have a low
correlation, then each is weighted by 1/its variance. The weight on �1 falls relative to the other�s with a
rising covariance/its variance.
On the diagram above one can see the likelihood distribution of the di¤erent data-estimated reduced form

coe¢ cients, �1.�2, according to the model parameters � the top frame showing one with zero correlation
between the two �s , the bottom frame one with a high positive correlation. In FII the parameters of the
model are searched over to �nd those that have the highest likelihood, given the data-estimated coe¢ cients
shown by the red or blue dots; the parameters whose peak likelihood gets closest to the data dots will be the
FII estimates. In ML the red or blue dots of the data are directly taken as the ML reduced form coe¢ cients;
and the model structural parameters are reverse-engineered to produce the ones closest to them.
Thus take a model y = f(�; �) which has a reduced form y = v(�; �). Assume it is identi�ed so that there

is a unique v corresponding to a particular f ; thus given v we can discover f and vice versa. Suppose now
on a sample y0 we obtain an estimate bv(y0): In FII we compute the likelihood of bv(y0) conditional on the
model and the data, thus L[bv(y0) j y0; f(�; �)]; we then search over � to �nd the maximum likelihood; this is
the FII estimate. If unbiased, it will on average be the f corresponding to v. In general we �nd low bias in
FII . In terms of our diagram bv is the blue or red dot and the joint distribution of the estimated model will
be close to being centred around it. Now ML in principle does the same, choosing the ML values of � that
generate bv as their solution of y0 = f(�; �):
It would seem therefore that the two estimates of the structural parameters should be the same. Indeed,

it has been shown (e.g. by Gourieroux et al, 1993) that this is the case asymptotically, i.e. for very large
samples. Both estimators are consistent in large samples, implying no bias.
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However, in small samples � such as are typical in macroeconomics � they are not typically the same
and we �nd bias in both according to our Monte Carlo experiments.
The question we wish to answer here is why the two estimates di¤er in small samples and the quantitative

contribution of the causes.
Le et al. (2016) showed that the power of the FII and the ML-based LR tests of the model f(�; �) di¤ered;

speci�cally FII was substantially more powerful. This occurred when the FII test used as the distribution
of v implied by f(�; �) the model-restricted distribution. If on the other hand it used the distribution of v
from the reduced form data-implied distribution, then the power of FII was reduced to equality with that
of LR. Thus the power of the FII test was considerably greater than that of the ML-based LR test � the
reason being that the FII test used the distribution of v as restricted by the model under test, whereas the
LR test used the reduced form v distribution from the data. In Figure 2 we show a stylised illustration of
this point: the �gure shows the situation for the likelihood distribution of bv(�),the vector of auxiliary model
features (ordered according to their Wald value under the model, with parameter vector �, indicated), under
the restricted and unrestricted cases. To the left we see the distribution under the true model, with �TRUE ;
to the right we see the distribution under the false model, �FALSE . In the top panel this is given by the
unrestricted distribution taken from the data, which is the same as the left hand distribution. In the bottom
panel, it is given by the distribution generated by the false parameter model in conjunction with the errors
implied by the model and the data. It can be seen that this latter distribution lies more narrowly around
the central false average due to the inward pull of the false parameters on the simulations.

Figure 2: Comparison of rejection rates of unrestricted and restricted distributions of bv(�FALSE)
Table 2 shows the relative power of the FII and ML tests on a 3 variable VAR (1) and is replicated from

Le et al. (2016) Table 1, where the Direct Inference column shows the results based on the LR test.
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Percent Mis-speci�ed Indirect Inference Direct Inference
True 5:0 5:0

1 19:8 6:3
3 52:1 8:8
5 87:3 13:1
7 99:4 21:6
10 100:0 53:4
15 100:0 99:3
20 100:0 99:7

Table 2: Rejection Rates for Wald and Likelihood Ratio for 3 Variable VAR(1)

We can now turn to the implications of this greater power in FII testing for the bias that arises in
estimation by FII and ML on small samples. The bias we estimate in our Monte Carlo (MC) experiments
is de�ned as B = E(b�) � �, where the expectation is across all the MC pseudo-samples from the true
model. We can express this de�nition in terms of all the possible sets of � arranged in order of falsity,
thus B =

X
i=%F

(�i � �)Pi where each �i is the set of parameters of i% falseness and Pi is the frequency

with which these are estimated in the MC samples. We can think of estimation by FII or ML as a process
related to rejecting model parameters that fail each test respectively; if a false parameter set is rejected, it
cannot become an estimate, and if not rejected for a sample, it can go on to become an estimate for that
sample. We also need to know the probability for either FII or ML that, conditional on not being rejected, a
parameter set � will then be chosen as an estimate. Call these probabilities in turn P1 for the probability of
non-rejection, and P2 for the probability of selection conditional on non-rejection. The MC experiments give
us directly Pi1 as one minus the rejection rate for �i.while we can obtain Pi from our MC results directly
as the proportion of estimates that are False to each extent. Then we derive Pi2 from Pi = Pi1 � Pi2. To
gauge Pi2 we argue as follows: a � parameter set that has not been rejected will still not be selected as an
estimate if there is an unrejected � of lesser falseness available instead that dominates it in the competition
to become an estimate.
Table 3 shows the small sample bias of the two estimators in the Monte Carlo experiment, replicated

from Table 3 from Le et al. (2016), clearly showing the big reduction in the bias under FII versus ML.

Starting Mean Bias (%) Absolute Mean Bias (%) Ratio
(true) coef FII FIML FII FIML FII /FIML

Steady-state elasticity of capital adjustment ' 5:74 �0:900 5:297 0:900 5:297 0:16
Elasticity of consumption �c 1:38 �5:804 �7:941 5:804 7:941 0:73
External habit formation � 0:71 �13:403 �21:240 13:403 21:240 0:63
Probability of not changing wages �w 0:70 �0:480 �3:671 0:480 3:671 0:13
Elasticity of labour supply �L 1:83 0:759 �8:086 0:759 8:086 0:093
Probability of not changing prices �p 0:66 �1:776 0:027 1:776 0:027 65:8
Wage indexation �w 0:58 �0:978 6:188 0:978 6:188 0:158
Price indexation �p 0:24 0:483 3:228 0:483 3:228 0:15
Elasticity of capital utilisation  0:54 �13:056 �29:562 13:056 29:562 0:44
Share of �xed costs in production (+1) � 1:50 �1:590 2:069 1:590 2:069 0:75
Taylor Rule response to in�ation rp 2:04 7:820 2:815 7:820 2:815 2:78
Interest rate smoothing � 0:81 �0:843 �0:089 0:843 0:089 9:47
Taylor Rule response to output ry 0:08 �4:686 �29:825 4:686 29:825 0:16
Taylor Rule response to change in output r�y 0:22 �5:587 0:171 5:587 0:171 32:7

Average �2:861 �5:758 4:155 8:586 0:48

Source: replicated from Table 3 of Le et al (2016), with added column showing FII /FIML ratio

Table 3: Bias of Formal Indirect Inference and FIML

We show next the predicted two probabilities and biases for FII and ML in Table 4. For this table we
have repeated the bias analysis with a fresh set of 1000 samples from the same model, yielding di¤erent
absolute mean biases, as one would expect; in this set the ML bias is about the same, the FII bias rather
smaller. What we see is that on average an unrejected � is 60% more likely to survive to being estimated
under FII as under ML [42/26]. We suggest this is because FII has a generally higher rejection rate than
ML, so that an unrejected � faces less competition from other unrejected �, and so has a greater probability
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of surviving to estimation. Under ML the probability of survival is inversely correlated with the probability
of non-rejection of the neighbouring � closer to the truth: we suggest this is because the higher the chances
of their non-rejection, the greater is the competition from them � see the right frame of Figure 3. What
we see under FII is di¤erent � the left frame of Figure 3. Survival chances of false �, if unrejected, are low
at the two extremes � both when close to true and when extremely false. Thus competition from better
alternatives is greatest either close to the truth (when the truth is a serious rival), or very far from the truth
(when the less absurdly false are serious rivals). This shift of survival probability to the extremes weakens
the tendency for FII to reduce bias, by increasing the estimation chances of the middlingly false values which
contribute most to the bias after taking account of rejection.

� : %False� FII � : %False�ML
Pi1 Pi2 Pi Pi1 Pi2 Pi

1 0:80 0:09 0:07 1 0:94 0 0
2 0:64 0:81 0:52 2 0:92 0:02 0:020
3 0:48 0:61 0:29 3 0:91 0:08 0:060
4 0:31 0:27 0:08 4 0:89 0:02 0:016
5 0:13 0:13 0:02 5 0:87 0:02 0:018
6 0:07 0:07 0:01 6 0:82 0:05 0:042
7 0:01 0:00 0:00 7 0:78 0:16 0:122

8� 9 0:62 0:54 0:332
10 0 0 10 0:47 0:43 0:200

11� 14 0:40 0:58 0:230
15 0 0 15 0 0
20 0 0 20 0 0

Predicted Bias*
E(b�)� � 5:9 0:42 2:46

Predicted Bias*
E(b�)� � 33 0:26 8:7

* The entries for this row, for each of FII and ML, .
are in turn:

P
i Pi1�i;[

P
i Pi�i]=[

P
i Pi1�i;]; and

P
i Pi�i

Table 4: Predicted probabilities and bias

Figure 3: Predicted probabilities and biases for II and ML

Summarising our �ndings, our Monte Carlo experiments have shown that the lower bias of FII compared
to ML comes primarily from a much higher rejection rate of false coe¢ cients. This advantage is to a modest
extent o¤set by the higher probability under FII that unrejected false coe¢ cients will survive to become
estimates. We interpret this in terms of the competition between unrejected coe¢ cients: this is greater
under ML than FII because there are more unrejected coe¢ cients to choose from at all levels of falseness.
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This competition also behaves di¤erently across the range of falseness, increasing with falseness under ML
as nonrejection falls, but intensifying under FII at both extremes, either close to truth or highly false.

3.1 Summary of �ndings

In this part we have re�ected on the reasons that Maximum Likelihood (ML) shows both lower power and
higher bias in small samples than formal Indirect Inference (FII ), drawing on the earlier work of Le et al.
(2016) and Meenagh et al. (2019), based on extensive Monte Carlo experiments. It emerges from this work
that when ML is being used, the likelihood distribution of bv, the auxiliary parameter vector from the model
under test, has a variance given by the unrestricted distribution of the errors whereas when FII is used it is
given by the variance of their distribution as restricted by the � of the model being tested, which is much
smaller. This is the source of the higher power of FII , as explained by Le et al. (2016). This in turn implies
that FII will have lower bias, because as sample data from the true model varies, false parameter values
will be rejected much more frequently under FII ; this greater rejection frequency is partly o¤set by a lower
tendency for ML to choose unrejected false parameters as estimates, due again to its lower power allowing
greater competition from rival unrejected parameter sets.

4 Conclusions

In practice macroeconomic researchers use a variety of estimators to parameterise their models empirically.
One such is FIML; another is a form of indirect inference we term �informal� under which data features
are �targeted�by the model � i.e. parameters are chosen so that model-simulated features replicate the
data features closely. In this paper we show, based on Monte Carlo experiments, that in the small samples
prevalent in macro data, both these methods produce high bias, while formal indirect inference, in which
the joint probability of the data � generated auxiliary model is maximised under the model simulated
distribution, produces low bias. We also show that FII gets this low bias from its high power in rejecting
misspeci�ed models, which comes in turn from the fact that this distribution is restricted by the model-
speci�ed parameters, so sharply distinguishing it from rival misspeci�ed models.
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Appendix: Parameter Descriptions

Table 5: Variable Descriptions
Variable Name True Value Description
� 0.19 Income share of capital
h 0.71 External habit formation
�p 0.22 Degree of price indexation
�w 0.59 Degree of wage indexation
�p 0.65 Degree of price stickiness
�w 0.73 Degree of wage stickiness
' 5.48 Elasticity of the capital adjustment cost function
� 1.61 1+the share of �xed costs in production
 0.54 Elasticity of the capital utilization adjustment cost
r�y 0.22 Taylor Rule response to change in output
� 0.81 Taylor rule coe¢ cient (interest rate smoothing)
r� 2.03 Taylor Rule response to in�ation
ry 0.08 Taylor Rule response to output
�c 1.39 Elasticity of intertemporal substitution for labour
�l 1.92 Elasticity of labour supply to real wage
Note: The true parameter values are from Smets and Wouters (2007), table 4.

11


